# Spacecraft Charging European overview

- European Space Agency (Alain Hilgers, David Rodgers)
- Centre Nationale d'Etudes Spatiales (Denis Payan)



## ESA's relation to spacecraft charging

 ESA runs a space programme on behalf of its 18 member states.

- Science
- Application
- Technology
- Education
- Other …



- Plasma is a factor to take into in spacecraft operations :
  - Instrumental
  - Detrimental



#### **Activities**

- Coordination activities
  - Define European space programme in coordination with member states :
    - Space missions
    - Support R&D activities
  - Reinforced coordination on spacecraft-plasma interactions :
    - SPINE
    - -> SEENoTC (B, E, F, G, SE, UK)
    - -> Harmonisation board -> MS programmes
    - -> ESA Technical dossier -> R&D programme
  - International collaborations:
    - Standards: ECSS, ISO
    - Support to SCTC-1998, 2001, 2003, 2005, 2007, 2010, 201?











# Some European priority needs

#### – Generic:

- ESD characterisation and mitigation
  - ESD model (laboratory test and numerical models)
  - ESD detector
  - ESD mitigation
  - Charge alleviation
- Electric propulsion system characterisation
- Development of modelling capacities
  - Standardisation of models
  - Material properties characterisation



# Some European priority needs

- Programme specific needs:
  - Galileo satellite environmental specification verifications
    - Analysis of data collected on Giove A & B
    - Development of new monitors
  - Jovian environment specifications
  - ESA space situational awareness programme preparation :
    - Cold plasma monitor
    - Hot plasma detector
    - Solar wind plasma monitor
    - High fidelity energetic electron monitors
    - Tether for de-orbiting



# Examples of achievements: SPIS

- 3D charging-PIC code
- Become a standard in spacecraft-plasma interaction modelling in Europe.
- Recent applications:
  - Modelling of FEEP-thruster plumes
  - Modelling of ESD initiation in solar cells gap.
  - Modelling of wire boom antenna plasma environment.
- On-going developments:
  - Improvements for geo type of charging
  - Improvements for science type of applications









# Example of achievements: ESD characterisation

Cf Denis Payan



# CNES R&D Activities related to spacecraft charging

Denis PAYAN CNES

With collaboration of ONERA, ASTRIUM, TAS, CRIL Technology, SUPELEC, ARTENUM, CESR, COMAT, EREMS, Paul Sabatier University, CNRS, ...

& ESA





## **European coordination**

■ Standard & Harmonisation



#### **Standard & Harmonisation**

- **■** European Coordination for Space Standardisation
  - **E20-06** Spacecraft Charging
  - E20-08 Inrush current for solar cells (One panel; 11A)
- Active participation to SEENoTC, Space Environments and Effects Network of Technical Competences
  - SEENoTC aims to reinforce the coordination of existing and planned space environments and effects related activities in Europe, through the implementation of a coherent European programme of activities in the domain
- General Coordination on SPIS, Standard, facilities, linked R&D activities with ESA.
- Coordination with Primes and manufacturers



### **Monitoring**

- Radiation monitor development and flight opportunities. No datas widely available related to spacecraft charging.
  - At CNES: Detector development (CESR participation)
  - At European level : SEENoTC program



#### **AMBER** sensor

**Active Monitor Box of Electrostatic Risk** 







- Angle of visibility 180°
- Electrons and lons measurement
- Flux from some pA/cm² to some nA/cm². Energy from 80eV up to 35keV.
- Sphere Radius internal 36 mm, external 37.8mm.
- Consumption 1W
- Weight below 1.5kg.
- Spacecraft interface : ICARE or Alone



#### **Facilities**

- Develop facilities able to
  - Represent space environment to provide a better qualification test for our primes, which warranty good behaviour of materials in space to their customers. (i.e. Sirene flux versus inadapted monoenergetic irradiation)
- Need a lot of up stream studies in R&D







#### **Experimental activities**

- Qualification on materials & assembly
  - Knowledge of Material versus time, temperature, ageing, dose, UV, BOL to EOL
  - Properties evolution during life in orbit
- Reproduce discharges in simulated condition of space ant not overestimated.



#### Dielectric behaviour Knowledge

From the beginning; NEW materials and storage before use



Potential mapping on 50µm Kapton® & FEP Teflon ®

Behaviour during all life in space



#### FO on large surfaces : experimental setup



#### **SPIS Studies**

- Complete ESA development thanks to general or specific development
- SPIS time dependant, Field emission, Boxes
- **■** Risky configurations
- Cells edge, glue overlap



# IVG situation and Discharge













#### **EMAGS III**

**■** The real case











### EMAGS 3

