Surface Charging Analysis of the Radiation Belt Storm Probes (RBSP) and Magnetospheric MultiScale (MMS) Spacecraft

V.A. Davis, M.J. Mandell, N.R. Baker, M. Brown-Hayes, Science Applications International Corporation

G.T. Davis, NASA/Goddard Space Flight Center

R.H. Maurer, C. Herrmann, Applied Physics Laboratory, Johns Hopkins University

11th Spacecraft Charging Technology Conference Albuquerque, New Mexico

Spacecraft Surface Charging Analysis

- What surface potentials (chassis and differential) can be expected?
- How will these potentials change with sun direction and spacecraft operations?
- How will these surface potentials influence the measurements?
- Can differential potentials that are high enough to cause discharges occur?

Outline of Discussion

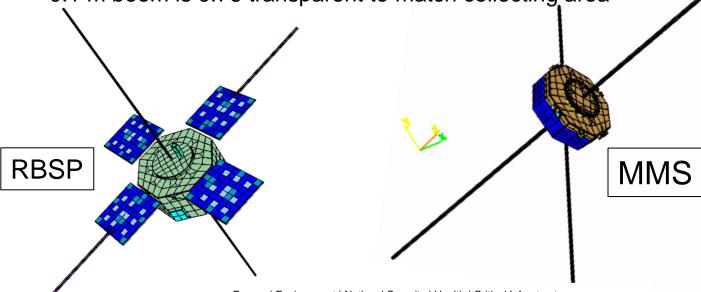
- Missions
 - Radiation Belt Storm Probes (RBSP)
 - Magnetospheric MultiScale (MMS)
- Surface potentials in magnetosphere
 - Nascap-2k models
 - Geosynchronous substorm
 - High secondary yield environments
 - Low temperature environments
 - Rotation
- Electric field measurements
 - Large scale potential variations
 - Spacecraft axial asymmetry
 - Contribution of differential potentials
- Conclusions

Missions

- Radiation Belt Storm Probes (RBSP)
 - Built by Johns Hopkins University Applied Physics Laboratory for NASA's Living with a Star program
 - Pair of satellites
 - 2012 launch, two-year mission
 - 700 x 30,600 km, 10° inclination orbit
 - Includes electric field and low energy particle instruments
 - Spin rate of 5 RPM; spin axis 20° off sun-pointing
- MultiScale Magnetosphere (MMS)
 - Built by NASA/Goddard Space Flight Center
 - Four satellites in tetrahedral formation
 - 2014 launch, two-year mission
 - 1300 x 70,000 km (1.2 x 12 $R_{\rm E}$), 28° inclination orbit; boosted to 1.2 x 25 $R_{\rm E}$
 - Includes electric field and low energy particle instruments
 - Spin rate of 3-4 RPM; spin axis 2° from perpendicular to Earth-Sun line

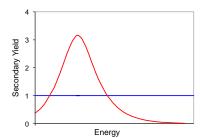
Electrostatic Cleanliness

Environments


- Tenuous, hot plasma (~10⁶ m⁻³, ~10⁴ eV) near geosynchronous altitudes during substorms
- Tenuous, moderate energy plasma (10⁴ to 10⁸ m⁻³, 1 to 10⁴ eV)
- Dense, cold plasma (~10¹² m⁻³, ~0.1 eV for RBSP; ~10¹⁰ m⁻³; ~1 eV for MMS) near perigee
- Surface potentials complicate measurements of electric fields and low energy particle fluxes
 - Requirement for less than 1 V differential potential=> conductivity requirements
 - Almost all surfaces conductive and grounded
 - ITO coated solar cell coverglass
 - No exposed voltages; solar cell sides and interconnects covered
 - MMS has active ion beam to keep potential < +4 V, ASPOC
- Region of scientific interest
 - RBSP: entire orbit because mapping radiation belts
 - MMS: above 9 R_F because interested in reconnection

Nascap-2k Models

- Include insulating surfaces, particle detectors, and the axial and magnetometer booms
- Very thin spin plane booms not in model
 - Introduce numeric difficulties
 - Estimate influence on axial electric field measurements
- MMS deployable truss axial booms modeled with solid booms
 - Use 0.1 m diameter to match capacitance


0.1 m boom is 0.76 transparent to match collecting area

Magnetospheric Spacecraft Surface Charging

- Potential of each surface adjusts until net current is zero
- Absent barrier formation, insulators charge independently from chassis
- Sunlit surfaces positive to re-attract most ejected photoelectrons
 - See poster Photoemission Driven Charging in Tenuous Plasma
- For 30 eV < θ_e < 2000 eV, - I_e + I_{sec} > 0 for most materials, even shaded insulating surfaces at positive potentials
- Magnetospheric environments:
 - Geosynchronous substorm and other high temperature $(\theta_e > 2000 \text{ eV})$
 - High secondary yield (30 eV < θ_e < 2000 eV) (rare for RBSP)
 - Low temperature (θ_e < 30 eV)

Secondary, Backscattered, Photo Electrons

Electrons

lons

Photons

SCTC 2010 RBSPnMMS vad

Geosynchronous Substorm Differential Potentials

- Significant negative chassis charging will not occur in sunlight
- Shaded insulating surfaces may develop kilovolt differential potentials and possibly arc discharges
- Calculations were done for 15 minutes in very severe "NASA Worst Case" environment in sunlight and in eclipse

	Thickness (mm)	Sun Angle	Sunlit Potential (V)	Eclipse Potential (V)
MMS Chassis			+3.9	-19,000
Cover	0.127	5°, 85°, shaded	+3.2 to -2900	-19,000
Connector	1.0	85° and shaded	-8000 to -12,000	-19,000
Foam	1.0	shaded	-12,000	-19,000
RBSP Chassis			+3.5	-22,000
Grout	0.635	20°	+0.4	-23,000
Sun Sensor	0.127	20°	+0.5	-22,000
Shaded Insulator	0.127	shaded	-4500	-22,000

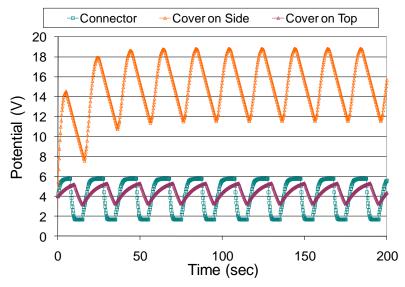
- Thick insulators and electrically isolated components of concern
- EMI shielding should be verified for discharges that may occur at the thickest insulators

High Secondary Yield Environments (30 eV < θ_e < 2000 eV; MMS Only)

- MMS most often in environments with -I_e + I_{sec} > 0, so even shaded surfaces at positive potentials
- Without ASPOC ion beam, chassis potentials ~+40 V in very low density plasma of magnetotail
- Shaded insulators may differentially charge negative to remain near plasma ground
- Insulators may have differential potentials on the order of +10 V and -40 V without ASPOC and +50 V and -2 V with ASPOC
- Results consistent with experience

	Env 1	Env 2	Env 3	Env 4
Temperature (eV)	350	2000	300	1000
Thermal Current (µA m ⁻²)	80	6.0	0.93	0.008
Sunlit Chassis with ASPOC off (V)	2.3	3.4	7.6	42
Eclipse Chassis with ASPOC off (V)	N/A	2.6	N/A	3
Insulator with Normally Incident Sun (V)	3.3	3.2	14.8	56
Shaded Insulator (V)	3.1	1.7	3.1	2.5

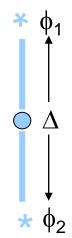
Low Energy Environments


- Below about 30 eV (depending on the material) few secondary electrons are ejected
- Shaded surfaces charge negative to repel plasma electrons
- Surfaces in wake of plasma flow have enhanced negative charging

	MMS				RBSP
	Plasma Plume 1	Plasma Plume 2	Low Temperature Solar Wind	18 eV	Geosynchronous, Local Noon
Temperature (eV)	0.6	1	15	18	5
Thermal Current (µA m ⁻²)	0.83	0.134	1.04	0.114	0.899
Sunlit Chassis with ASPOC off (V)	2.2	5.9	5	13	4.5
Eclipse Chassis with ASPOC off (V)	N/A	N/A	N/A	-21	N/A
Directly Sunlit Insulator (V)	1.3	8	9.8	22	3
Shaded Insulator (V)	-1.5	-2.5	-50	-27	-11
Insulator on Side (V)	-1.5 to 1.3	-1.5 to 6.7	-11 to 7	3.5 to 10.5	N/A

Effect of Rotation (MMS)

- When rotation is included, surface potentials of thinner surfaces may not reach equilibrium values
- Electrically isolated and thick layers (Connector) reach equilibrium potential quickly
- Thin layers (Cover) reach equilibrium potential slowly
- Chassis held at 4 V by ASPOC



Electric Field from Surface Potentials

Measured field is potential difference between two symmetrically opposite points, E = $\phi_2 - \phi_1 / \Delta$

Dipolar potential of value ±0.5 V

	RBSP	MMS
Radius of equivalent sphere (m)	0.96	1.4
Distance to electric field sensor (m)	6	15
Potential at axial electric field sensor (mV)	±13	± 4.1
Spacecraft electric field (mV/m)	2.2	0.26
Target axial field accuracy (mV/m)	4	1

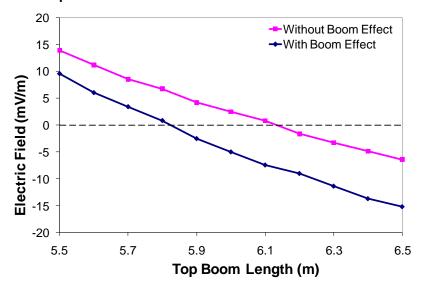
- A dipolar field can result from
 - Asymmetric charge on the spacecraft
 - Probably impossible to correct
 - Geometric asymmetry of a uniformly charged spacecraft
- Analytic result for 10-cm radius patch (300 cm²) differentially charged to 50 V (ignores spacecraft capacitance)

Potential at axial electric field sensor (mV)	25	3.3
Spacecraft electric field (mV/m)	2.1	0.11

Asymmetric Spacecraft Creates Dipolar Field

Source of axial asymmetry

- RBSP: Solar array panels
- MMS: Spin plane booms 0.27 m above body center and magnetometer booms below center

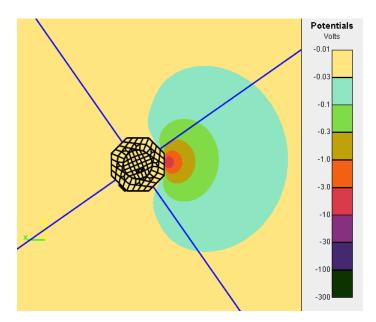

Correction

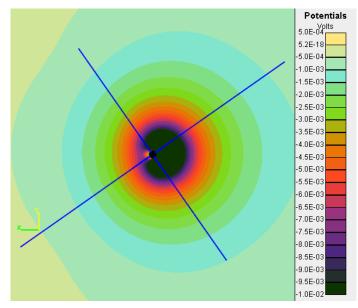
- RBSP: Axial booms lengths to be adjusted on orbit
- MMS: Bottom axial boom inset about 10 cm

Calculation

- Spin plane booms approximated by spheres with same potential and electric field at detector
- Similar calculation for MMS shows ~25 cm inset needed; remaining field to be corrected for in data analysis
- Assumes no debye shielding

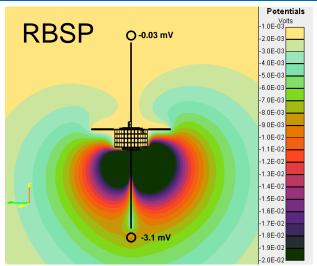
RBSP Axial Electric Field as Function of Top Detector Position for +4 V chassis

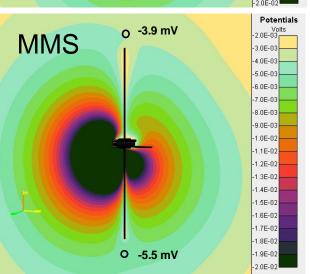




SCTC 2010 RBSPnMMS vad

Insulators Have No Influence on Spin Plane Electric Field Measurements


- Solve Laplace's equation for RBSP
 - 26.7 cm² shaded insulator at -1 kV; chassis at +0 V
 - Monopole boundary conditions on grid boundary
- Resulting difference at ends of spin plane booms
 - ~0.45 mV/80 m << 0.3 mV/m requirement
 - Results similar for MMS



Axial Booms Reduce Spacecraft-generated Field

Analytic result for 300 cm² at 50 V

	RBSP	MMS
Spacecraft electric field (mV/m)	2.1	0.11
Target field accuracy (mV/m)	4	1

- Laplace's equation with spacecraft geometry gives potentials at axial electric field detectors
 - Calculation includes capacitance of all surfaces
- Spacecraft surfaces
 - Chassis at 0 V
 - RBSP: 0.06 m² at –50 V
 - MMS: 0.11 m² at –50 V
- Spacecraft-generated field
 - RBSP: 0.3 mV/m
 - MMS: 0.05 mV/m
- With debye screening, potentials will be smaller

Conclusions

- Computed RBSP and MMS surface potentials and consequences
- RBSP and MMS have a high degree of electrostatic cleanliness
- Surface potentials expected to have acceptable impact on measurements
- Surface potentials controlled by
 - Tenuous plasma => sunlit surfaces float positive
 - Dense plasma and shaded surfaces => negative potentials
 - -J_e + J_{sec} > 0 => shaded surfaces +1 to +2 V
 - Low current => surface potentials never reach equilibrium
- Spacecraft axial asymmetry creates measurable axial field
 - Reduced by different length booms
- Differentially charged insulators create electric field
 - Spacecraft capacitance reduces field
 - 0.1 m² => E << requirement

