

Environment exposure tests of Electron Emitting Film for Spacecraft Charging Mitigation (ELF's CHARM)

A. R. Khan, T. Sumida, M. Iwata, K. Toyoda, M. Cho¹ and T. Fujita²

- 1. Kyushu Institute of Technology, Japan
- 2. Japan Aerospace Exploration Agency (JAXA), Japan

Outline

- Background of emitter
 - Basic idea
 - Theory
 - Practical situation
- Electron emission activity
- Environmental durability
- Conclusion
- Future tasks

Background: Basic idea

High energy electrons (due to substrom)

Arc threshold: 400V

- Satellite turns to negative potential (shown by black line)
- Coverglass turns to less negative potential (shown by red line)

Responsible for ESD followed by on-orbit anomalies.

How to mitigate the ESD?

Electron emitting Film (ELF)

Pre-condition for operation

- Inverted Potential Gradient (IPG)
- Existence of Triple Junction (TJ)

IPG Electric field Field Emission

Advantages

- Passive in operation
- No sensor needed
- •No wire harness
- •Lightweight (~1.4g)
- Acts as surface charging monitor (SCM)5

Operational mechanism of ELF

Background: Theory

Fowler-Nordheim (F-N) field emission current

$$j = A(E)^2 \exp\left(-\frac{B}{E}\right)$$

$$A = \frac{1.54 \times 10^{-6} 10^{4.52/\sqrt{\phi}}}{\phi}$$

$$B = 6.53 \times 10^{9} \phi^{1.5}$$

$$B = 6.53 \times 10^9 \, \phi^{1.5}$$

E: Field strength on surface (V/m)

φ: Work function (eV)

To have appreciable current, we need an electric field in the order of 109 V/m

How do we get high E. field?

• By charging the insulator by ambient charged particle (e.g. electron)

$$E_{\circ} = \frac{\Delta V}{d} = \frac{1000}{25 \times 10^{6}} = \frac{4 \times 10^{7} \text{ V/m}}{\sqrt{1000 \text{ km}}} \qquad \text{and } \Delta V = \text{voltage across the insulator}$$

$$\frac{\Delta V}{d} = \text{voltage across the insulator}$$

• By dielectric impurity (e.g. local ionization and diffusion) or by micro-protrusion, local enhancement of electric field ($E=\beta E_0$) is possible. Therefore, macroscopic field can be enhanced microscopically by a factor of β that must be more than 100 to get the field emission.

Field enhancement factor, β

-If $\beta = 0$, ideal flat surface

-If $\beta > 0$, surface will be rough with many sharp emission sites.

Local ionization and diffusion effects the inside dielectric impurity and increase the emission area (S_{real}). Thus $\beta > 1000$ is possible.

Ph.D. thesis, Mengu Cho, MIT, 1992

Background: Practical situation

β measurement via field emission microscope (FEM)

La SEINE Measurement schematic (FEM)

ELF before measurement

After surface mapping

Scanning resolution: $dx = dy = 2\mu m$

Emission current distribution

14

Superposition of two pictures

Distribution of β

There are many active sites on this emitter surface that should emit electrons

Electron emission from emitter (ELF)

Experimental setup and electrical circuitry

Current flow during Field emission

Current flow during Discharge

ELF in vacuum chamber

Experimental condition

Pressure : $4\sim6 \times 10^{-4} \text{ Pa}$

Sample Bias = -5.0 kV

Beam Energy = 5.5 keV

Beam current = $50 \mu A$

Continuous 9 hours emission is also confirmed

To check the emission longevity (Endurance), recently accumulated 100 hours emission is completed and result is submitted for publication to *Journal of Spacecraft and Rocket*

Surface potential distribution

(before and after emission)

During emission, IPG is confirmed as well

Vital parameters (must be examined)

Contamination effect

Checked and passed

- Emission longevity (100 hours)
- Environmental durability
 - 1. High energy Proton and Electron effect (10 solar years equivalent)
 - 2. Effect of Thermal cycling (10 solar years equivalent)
 - 3. Effect of VUV irradiation (10 solar years equivalent)

Environmental durability

Effect of high energy
Proton and Electron irradiation
(10 solar years equivalent)

Proton and Electron irradiation

Experimental condition (equivalent to 10 years)

- Dosing time: 800s
- Proton fluence: 1x 10¹² cm⁻²
- Proton energy: 10 MeV
- Electron fluence: 1x10¹⁶ cm⁻²
- Electron energy: 1 MeV
- Scan area : 10x10 cm²
- Pressure : $\sim 10^{-4}$ Pa

LA SEINE ELF in the irradiation chamber

Microscopic pictures

(after 100 hrs Endurance and Proton irradiation test)

Microscopic pictures

(after 100 hrs Endurance, Proton and Electron irradiation test)

Emission comparison

(before and after Electron, Proton irradiation)

There is no effect of high energy particles on this emitter

30

Environmental durability

Effect of
Thermal cycling
(10 solar years equivalent)

Thermal Cycling experiment

32

Experimental condition

ELF arrangement inside TC chamber

Max. temp: 100°C

Min. temp: -150°C

Rate: 20°C/min

Total cycles done: 1018

Emission comparison

(before and after TC)

There is no effect of thermal cycling on this emitter

Environmental durability

Effect of VUV irradiation (10 solar years equivalent)

VUV irradiation

Effect of VUV irradiation

(around triple junctions)

Before

After

Formed during patterning not due to other effect while doing experiment

No visual damage seen

Effect of VUV on emission

Although the emission level reduced with time, after 10 years equivalent solar exposure, this emitter is still active.

Conclusion

After high energy Proton and Electron irradiation, thermal cycling and VUV irradiation experiments equivalent to 10 solar years,

- No physical damage is found
- > Little emission level deterioration is observed
- Emitter is still active.

Therefore, this electron emitting film is durable and resistance to those harsh space environments.

Future tasks

- ➤ Checking the emission longevity for longer period around 600 hours.
- ➤ Checking the effectiveness of ELF after setting on solar panel and measuring the discharge on it whether ELF help reduce discharge or not.
- Improving emission level (e.g.by changing the film materials, etching pattern, thickness, roughness, etc.)
- Finding the mechanism, cause of off-time emission, role of other parameters (e.g.UV, beam current density, surface roughness, etc.) on emission of this emitter.
- > Flight demonstration: HORYU-2 (KIT student satellite)

Thank you