Characteristic of Internal Charge Distribution in Pl Irradiated by Proton

Hiroaki MIYAKE, S. Numata, Y TANAKA, T TAKADA

Tokyo City University, JAPAN

Introduction

The satellite anomaly happen on orbit.

More than 50 % of the origin of accident is ESD.

We focused the phenomena of the internal charging on the surface dielectric materials. We measure the internal charge distribution on PI films irradiated by **protons** using **Pulsed Electro Acoustic (PEA) method**.

How to see and understand internal charging data by PEA method

PEA system for radiation

- The internal charge accumulation and distribution in dielectrics can be observed using PEA method. That is developed by Tokyo City University(Musashi Institute of Technology).
- We observed the Positive charge accumulation in the bulks of PI films irradiated by the Proton beams.

PEA system can obtain the time dependent charge distribution

Why we use the Pulsed Electro-Acoustic(PEA) method for internal charging of dielectric bulks irradiated by radio-active rays?

- The PEA method is widely use on the high voltage insulating society.
 The standardization process of PEA is in progress on IEC.
- 2. The sensor (piezo-electric device) is completely isolated from charged sample. Therefor this method has a high resistivity for discharge noise.
- We can improve to measure the surface and internal charge distribution, simultaneously.
 (But, in this report, we only introduce the internal charge distribution.)

Measurement Procedure

- : PI, 125 μm Sample (with the AI evaporated layer)
- Irradiation energy: 1.0, 1.5, 2.0 MeV
- · Current density : 0.3, 3, 30 nA/cm²
- Irradiation and measurements were carried out under vacuum condition with 10⁻⁵ Pa

-Irradiation & measurement schedule-

- •: start of measurement
- •: end of measurement
- · Irradiation time: 30 min
- Measurement interval: each 30 sec

3MeV Tandem Accelerator Takasaki Advanced Research Institute, JAEA

Van de Graff High Fluence Irradiation Facility, The University of Tokyo

Improvement of PEA apparatus for proton irradiation

Measurement results Each result shows the maximum accumulation during irradiation.

0.3 Beam Current Density J [nA/cm²]

Characteristics of total charge amount in irradiation time progress

Conclusions

- □We observe the positive charge accumulation in the PI bulks irradiated by protons.
- □ Charge peaks agree well with theoretical estimation penetration depth.
- □ Maximum accumulated charge amount is proportional to irradiation energy.
- □ Charge accumulation and decay speed is depend on the irradiation current density.
- → RIC may be influenced by the proton flux(current density).
- □ Positive charge accumulation possibly remain the bulk for long time with the nominal flux on the orbit.

Future works...

- We make the charge accumulation and decay model to understand the charging phenomena.
- We measure the volume resistivity of PI irradiated by protons.
- □ New improved PEA measurement system which can measure the surface and internal charging will be available in next few month.

Frequently irradiation

Sample: PI Energy: 1.0 MeV Current density: 4 nA/cm²

- 1回目の照射と、2,3,4回目の照射では蓄積挙動が異なる
- 一度プロトンを照射した際の変化は不可逆的

Number of vacancy and displacement in PI using TRIM coad

Vacancies

空孔、変移量共 に 1 MeVの方が 多い

Displacement

1MeV, 2000 particle

1.5MeV, 2000 particle