A review of mechanisms and models accounting for surface potential decay

Philippe Molinié Supélec - Département Energie

Supélec

Electrostatic research in Supelec

- A diversified experience on material characterization and electrostatics
 - Material characterization for HV engineering
 - Tribocharging in automobile industry (seats, airbags, gasoline)
 - electrets for medecine
 - Charge buildup and decay for space coatings (collaboration with CNES and ONERA)

• . . .

Research in Electrostatics

- An important industrial issue
- However research scattered

"...most people do not even think about electrostatics unless they have a problem"

December 1969

Mactra (2) at Durban after the explosion. (Photo by Henry van den Heever

Research in Electrostatics

- An important industrial issue
- However research scattered

- Very few laboratories with Electrostatics in their names
- Structured networks : ESA, ESDA, IEJ, SEG IOP, EWP SEI(EFCE), SFE...
- Spacecraft charging issues should be more present in them!

« Charging in space environment has particular features... »

one of them being ...

What happens in an insulator after charging?

- Several tools :
 - Current and charge measurements
 - Charge mapping techniques (LIPP, PEA, etc.)
 - Surface potential decay measurements

A classical experiment

(Von Berlepsch 1989) (leda 1967)

Charge

Veasurements

Modelling

- ► Input : V(t)
- What can we do with that ?
- Here : not a particular model but review of the main types
- Based on more than 250 papers gathered and studied in Supelec since 1980

Surface potential decay models: where are they coming from?

- Electrical engineering
 - -> mastering space charge

(leda, 1967)

Surface potential decay models: where are they coming from?

- Electrets
 - -> removing conductivity
 - -> enhancing trapping

Surface potential decay models: where are they coming from?

- Electrophotography (copiers, laser printers)
 - -> mastering charge transport
 - -> mastering photoconductivity

Modelling

- ▶ 1D problem
- ► Boundary condition : E=0 outside

Modelling

Poisson equation

$$divE = \frac{\rho}{\varepsilon_0}$$

$$divD = \rho$$

$$divD = \rho$$

$$D = \varepsilon_0 E + P$$

Continuity equation

$$\frac{\partial \rho}{\partial t} + divj = 0$$

$$div\left(\frac{\partial D}{\partial t} + j\right) = 0$$

... in open circuit:

$$\frac{\partial D}{\partial t} + \left(\sigma + \sum_{i} \mu_{i} \rho_{i}\right) E = 0$$

Calculation of V:

$$V_{s} = -\int_{0}^{d} E dx$$

Possible causes of the SPD

$$\frac{\partial D}{\partial t} + \left(\sigma + \sum_{i} \mu_{i} \rho_{i}\right) E = 0$$

$$D = \varepsilon E$$

Dipolar Polarisation / relaxation

$$\frac{\partial D}{\partial t} = 0$$

$$\frac{\partial P}{\partial t} > 0$$

$$\left| \frac{\partial E}{\partial t} < 0 \right|$$

Charge injection

$$\varepsilon \frac{\partial E}{\partial t} + \sum_{i} \mu_{i} \rho_{i} E = 0$$

Conduction (internal carriers)

$$\varepsilon \frac{\partial E}{\partial t} + \sigma E = 0$$

Relaxation - dipolar polarization

Linear model (transfer function)

$$E(t) = \frac{1}{\varepsilon_0} \int_{-\infty}^{t} D(\tau) \phi_E(t - \tau) d\tau$$

▶ DP can be deduced:

$$\frac{dV(t)}{dt} = -\frac{1}{L}\frac{dE}{dt} = -\frac{Lq_0}{\varepsilon_0}\frac{d}{dt}\int_0^t \phi_E(\theta)d\theta = -\frac{Lq_0}{\varepsilon_0}\phi_E(t)$$

Relaxation - dipolar polarization

Molinié 1995 (epoxy)

Charge injection

Sessler 1999

« Electrostatic » models

ightharpoonup Mobility μ

=> dV/dt constant for t<transit time

Introducing trapping

(Dissado, Fothergill)

=> dispersive transport

Detrapping controlled decay

demarcation energy models

(Dissado, Fothergill)

(Watson)

Internal conduction

Homogeneous conduction models

$$\frac{\partial \rho}{\partial t} + divj = 0$$

$$\frac{d\rho}{\rho dt} = -\frac{\sigma}{\varepsilon}$$

Charge screening

Sessler 1999

Internal conduction

Homogeneous conduction models

$$\frac{\partial \rho}{\partial t} + divj = 0 \qquad \longrightarrow \qquad \frac{d\rho}{\rho dt} = -\frac{\sigma}{\varepsilon} \qquad \text{Charge screening}$$

$$\frac{d\rho}{\rho dt} = -\frac{\sigma}{\varepsilon}$$

- Carrier generation and recombination
- Radiation-induced conductivity

RIC: Application to Teflon FEP and Kapton polyimide

Radiation-induced conductivity

- A difficult dynamical problem
 - Trapping profile and polarization will depend on time (as any SPD experiment)
 - + introducing a charge carrier generation parameter also depending on time (beam on/off) and space (absorption)

Summary

- The behavior of insulator is complex!
 - cannot be described by a single figure as « resistivity »
- Difficulty to interpret surface potential decay experiments
 - ... because of many possible mechanisms
- multiple experiments to be performed
- appropriate plot for the data
- complementary techniques to be coupled (LIPP, PEA...)
- ► MORE INFORMATION ON MY DETAILED PAPER*
 - *except on space cats research, which is classified