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Outline

Goal: quantifying the ambient environment along satellite orbit, relevant
to spacecraft charging, by “flying” virtual satellites in model domain

Physics-based model: Ring Current Atmosphere Interactions Model with
Self-Consistent Magnetic (B) field (RAM-SCB)

= |mportance of interaction between particles and fields

= (Can be driven by global model (e.g. SWMF) or data-driven (e.g. LANL)

= Full 3-D and pitch angle anisotropy

= Particles include contributors to both surface and internal charging

Results: RAM-SCB geomagnetic storm simulation
= Proof of principle: virtual satellites in RAM-SCB; virtual spectrograms

Potential of virtual spacecraft in space weather models to prescribe the
environment relevant to spacecraft charging
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Storm-time Inner Magnetosphere

From Daglis, [2006]

e Challenge: to understand and model the space environment, specifically

geomagnetic storm changes in the inner magnetosphere:
Major changes in the geomagnetic field
Ring current (keV to 10s of keV) enhancement (=»  surface charging)
High-energy (MeV and 100s of keV) electron flux enhancement
(=» internal charging)

> Affected by plasma-excited waves
» Dependent on the magnetic field
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Dipole Approximation Breaks Down 1n
the Storm-time Inner Magnetosphere

e Observations =» strong magnetic field decrease during storms

I 04/06/00 22:00 UT Dst = -250 nT
- n | From 7syganenko et al., [2003]

e Dipole approximation breaks down at 3-4 R

e The changed field significantly influences plasma/rad. belt particles o
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Need for Physms based K1net1c Models l

T=00:00:00 hrs  PIMHDY} [nPa] T=0 -HHHH.II‘ T=0& urr (16} B

T=00:00:00 lus  PIRCM) [nPa] T=04:000:06) bars

De Zeeuw et al., 2004

Plasma also changes the field
Global magnetohydrodynamics (MHD) models:

= Fully self-consistent, but unrealistic in inner magnetosphere
= Ring current energy density ~ 1/10™ of observed values
= Causes: Coarse resolution; lack of gradient/curvature drifts and heat flux

[Heinemann and Wolf, 2001]
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RAM-SCB: Self-consistent Kinetic
Inner Magnetosphere Model

Ring current-atmosphere

Interactions model (RAM)
[Jordanova et al., 1994, 2006]

e Bounce-av. Boltzmann eq.

e Applied convective +
corotation E-field

e Updated to general
magnetic (B) field

Pressure

3D equilibrium code
[Cheng, 1995; Zaharia et al., 2004;
Zaharia, 2008]

e Euler potential formulation
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RAM-SCB Formalism: RAM

e RAM-SCB: particle/field dynamics on time scales > bounce/Alfven times

e Kinetic Ring Current Atmosphere Interactions Model (RAM):
= Evolution of bounce-averaged distribution function [Jordanova et al., 1994]
= Energy range: 100 eV to 500 keV
= Generalized to arbitrary (closed-line) magnetic field geometry
= 4 coordinates: 2 spatial (R, @) + energy E, pitch angle a (u, = cos a)

(i
dt y

1 0 0 du ]
— ZNVE(=)F, |+ 2 In “Ho \p | =
VE oE h (1) o 8/10[ (ﬂc’)#"< dt > t

_<£

e Most physically complete model; different losses: charge exchange,
Coulomb collisions, wave-particle interactions, losses to atmosphere
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RAM-SCB Formalism: SCB

e Single-fluid plasma equation of
motion:

e Plasma and fields in the near-

Earth magnetosphere (< 10 R¢) in

quasi-force balance (slow-flow
approximation; Wolf, [1983])

e B-field in Euler potential
representation:

e Coupled quasi-2D elliptic PDEs,
solved iteratively [Zaharia et al.,

2004;2008]

p e —+(V V)v|=JxB - V.P

mass acceleratlon force densit

density

JxB=V-P

WithV-P=VP -V-[(P, - P )bb]
U

2
AxB=VP -(B-Vo)B+(1- o-)V(B?J Force balance equation

Ampere's law
No magnetic monopoles

V-B=0 = B=VaxVp

o, = Euler potentials

(Clebsch coordinates or flux coordinates)
a = magnetic flux function

£ = angle - like variable

V- |VayVp-a-VpVa ] w [VP + (- a)v(Bzﬂ

[(Va VAVB-(VA) V“] /’OBszﬂ [VPL +(1—0)V(72ﬂ
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RAM-SCB Model Setup

e Coupling freq.: 5 min.

e Plasma sheet boundary:
= 6.6 Rz — LANL obs.
(MPA/SOPA)
= Empirical plasma
models/global codes
(BATSRUS MHD)
¢ B-field boundary:
= Empirical (T89, T04S)
= BATSRUS MHD code
e E-field: empirical
(Volland/Stern, Weimer) or
from IE model

e Dipole tilt included (RAM
in equatorial SM plane)

RAM-SCB domain (T89 boundary)
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RAM-SCB Inside Space Weather
Modeling Framework (SWMF)
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e Alternative RAM-SCB input: plasma & magnetic boundaries from BATS-R-US,

electric potentials from ionospheric electrodynamics (IE) solver [Zaharia et al.,
submitted to J. Geophys. Res., 2010]
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Simulated Event: Sep. 2005

Geomagnetlc Storm

Solar Wind DI’IVEFS Aug 31 2005 Iarge CME dnven
' storm; min. SYM-H =-116 nT

Main phase /early recovery (9:00 UT
to 24:00 UT) simulated

RAM-SCB inputs:

= Plasma conditions at outer
boundary by LANL geo. obs.

= |on composition by Young et al.
[1982] empirical relationship:

IMF By (nT)

IMF By (nT)

IMF B, (nT)

No./n,, = 4.5 x 10?% exp [0.17 Kp + 0.010 F,

e Convection electric field; Weimer
2001 empirical model

e B-field boundary by the T89 empirical |
model

M«MW e

12: 00 uUT 18: 00 UT 00: 00 UT 06:00UT 12: 00 UT 18:00 UT 00:00 UT
Universal Time from 2005-09-02T02:00:13.391000 LOS Alamos




Results — Ring Current and Dst

e Contribution to ring current by H+ and O+ for 3 times: early storm
(14:00 UT), observed Dst peak (17:00 UT), early recovery (23:00 UT)

e RAM-SCB underpredicts the total ring current energy (and Dst)
Dst obtained with Dessler-Parker-Sckopke (DPS) formula from energy
density inside geosynchronous orbit only
Magnetotail current contribution (up to 50% e.g. Ganushkina et al., [2004])
not included
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Results at Virtual Spacecraft Locations

e Output from RAM-SCB -
inside irregular 3-D cloud
= Post-processing needed
for output at each
location of interest

e Or: “fly” spacecraft in the simulation, obtain output at satellite location directly:
For each point on satellite orbit, find grid nearest neighbors by k-d tree (octree)
search method [Kennel, 2004]
Interpolate (distance-weighted) among a set number of nearest neighbors
For particle flux, use Liouville’s theorem to map distribution function from SM
equatorial plane to all locations within 3-D domain
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Results: RBSP Virtual Spacecraft

N O RKFENWDRBRWLO

-2-101 2 3 4
SM X SM

e Radiation Belt Storm Probes (RBSP)
= gslated to launch in 2012

= 2-spacecraft mission will examine the radiation belts in-depth, including waves,
magnetic and electric fields, and plasmas of ring current energies

e RBSP satellites included to examine what they would observe had they been
in orbit for this event; using a portion of their early mission orbits

= RBSP 1 spends most of the storm main phase in the noon/dusk quadrant; RBSP
2 lags behind slightly




Results: Spacecraft-Specific (1)
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Fields are obtained at spacecraft location by interpolating from 8
nearest neighbor grid points to satellite location
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Results Spacecraft Specific (2)
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Results “drop out” (e.g. 17:30 UT) when satellite leaves the simulation domain
or when the grid nearest neighbors are beyond a set threshold

Log,, Energy (K=V)
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Results: Instrument-Specific,
Combmed Specles

e Helium, Oxygen, Proton,
Electron (HOPE) instrument
on RBSP:

= jons/e- from 1 eV to 50 KeV
= 5 separate polar pixels

12:00 UT 15:00 UT 18:00 UT 21:00 UT

12:00UT 15 lFJ';rerO oOuT  21:00UT ’ COinCidence COUﬂting rateS

Hh ¥  from directional flux:
_3 fon dre
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= J =directional flux
= (= geometric factor
= dE = width of energy bin

RAM-SCB virtual satellite =»
count rates for each pixel
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Results: Instrument & Species-specific

s Specific Counting Rates
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Summary

e Motivation: To quantify space environment output at specific spacecraft
from numerical space weather model

e Tool: RAM-SCB physics-based self-consistent inner magnetosphere
model: kinetic model + 3D force balance code

e Results:

= Proof of principle: technique of “flying” virtual satellites in RAM-SCB
successfully developed/used to generate high-res. results along spacecraft
orbit (RBSP)

= Satellite-specific simulation results used to create instrument-specific count
rates/virtual spectrograms

= Method applied to the RBSP HOPE instrument to create a mock-up of low-
level data products




Virtual Satellites in Numerical Models

e “Virtual® satellites — powerful method to tie observations and
simulations together

e Use of virtual satellites - many research and applications possibilities:
Obtain ambient space environment for spacecraft charging models
Perform one-to-one model-observation comparisons
Complement existing observations with virtual set not bound by instrument
restrictions
Plan for future missions with data product mock-ups/observation
predictions
Monitor spacecraft-specific environmental conditions with real-time
simulations




Future Plans

e Model improvements:
= Expand boundary to 9 or 10 R (to obtain geosynchronous model output)
= Include electrons to RAM-SCB simulation

= Develop real-time version and validate/determine performance vs. input
parameters

e \irtual satellite technique improvements:
= Allow B-field and spacecraft spin axis to be non-parallel
= Use geometric factors that vary in look angle and across the detector
= Expand the number of instruments simulated

e Use model environment output in spacecraft charging code (e.qg.
NASCAP-2K)




